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J .  Phys. A: Math. Gen. 18 (1985) 1641-1656. Printed in Great Britain 

Stochastic quantisation: stabilising quantum models 

Z Habat 
Zentrum fur interdisziplinare Forschung, Universitat Bielefeld, D-4800 Bielefeld, FRG 

Received 7 June 1984, in final form 27 November 1984 

Abstract. Ostenvalder-Schrader positivity is shown to be fulfilled for stochastically quan- 
tised lattice gauge theories, spin models and P(q) interactions bounded from below. 
Problems arising in the stochastic quantisation of bottomless P ( q )  models are discussed. 
A stochastic equation is derived to stabilise the quantum Einstein gravity. It is shown that 
the stochastic quantisation of the Yang-Mills theory leads to a well defined semiclassical 
expansion. 

1. Introduction 

Stochastic quantisation has been proposed by Parisi and Wu [l] mainly with the aim 
of avoiding the gauge fixing in continuum gauge theories. Subsequently numerous 
applications were found to the reduction of the number of degrees of freedom in the 
large N limit [2], [3] and to computer simulations [4]. On the perturbative level 
stochastic quantisation is equivalent to the conventional functional quantisation [5]. 
However, as pointed out by Greensite and Halpern in their inspiring paper [6] the 
stochastic method applies also to the theories with the classical action unbounded 
from below. This raises the question of whether such a stochastically quantised theory 
is relativistic. In particular, whether the Hamiltonian can be defined as an operator 
bounded from below. This will be the case, if the Osterwalder-Schrader (os) positivity 
[7] is fulfilled. For this purpose the stochastic quantisation must be formulated in a 
way that ensures the os positivity. Such a formulation is possible on the lattice. 

In this paper we show first that the stochastic quantisation of lattice fields with 
values in a compact manifold M without a boundary is equivalent to the conventional 
average with respect to the equilibrium Gibbs measure. We discuss some problems 
concerning the os positivity of bottomless P ( 9 )  models. We derive the path space 
measure for a stochastic process fulfilling the stochastic equation. As a direct outcome 
of the formalism of stochastic quantisation on manifolds we get a stochastic equation 
and a path space measure for a stochastic process on the manifold of Riemannian 
metrics. We show that the path space meaure for the stochastically quantised Yang- 
Mills theory leads to a well defined semiclassical expansion. 

2. Stochastic quantisation on manifolds 

Parisi and Wu [ 13 in their method of stochastic quantisation define a stochastic process 
as a solution of the Langevin equation. A solution of such an equation (with the white 

t On leave of absence from: Institute of Theoretical Physics, University of Wroclaw, Poland. 
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noise as a stochastic input) determines a Markov process (Prohorov and Rozanov [8]). 
The relation between the stochastic method of quantisation and the conventional Gibbs 
ensemble approach of Euclidean field theory (Glimm and Jaffe [14]) depends on 
various, sometimes inequivalent, characterisations of the Markov process. 

The relation between these two methods of quantisation is simple in the case of 
lattice fields with values in a compact Riemannian manifold M without a boundary 
(e.g. gauge theory and u-models on the lattice). Then, the stochastic quantisation 
leads to a Markov process on M ,  = X; M. A stochastic process e( t )  is defined by a 
probability measure on a set of functions (sample paths). In particular, the Markov 
process is characterised by its transition function P( t, m, E )  being the probability that 
[( t ) ,  starting from m E M,, will be found in a set B c M,. The Markov process is 
called stationary, if the correlation functions of e( t )  are invariant under translations 
i n  time. The Markov process is stationary, if it has a normalisable invariant measure 
p on M,, ( p ( M , , )  = 1)  defined by 

The asymptotic distribution appearing in the ergodic theory is determined by the 
invarimt measure as 

lim P ( t ,  m, E )  = p ( E ) .  (2.2) 
1-x 

Conversely if we have the transition function P( t ,  mo, d m )  = p (  t, mo, m )  dm, where d m  
is the Riemannian volume element on M,,, and a normalisable invariant measure p, 
then we can construct a stationary Markov process with p as the initial distribution 
(see Prohorov and Rozanov [8] for these results). 

The measure v on sample paths can be expressed by p as a limit (in the weak 
sense) of vN where 

with 

The limit N + ~3 in (2.3) does not depend on E.  Clearly, if the process 
then 

1 F ( t ( t ) )  du(6)  = 1 F ( m ) p ( d m ) .  

If time t is continuous and  A is the generator of the process 5, defined by 
then from (2.1) we have 

A*p = O  

where A* is the adjoint of A in L2(dm). 

(2.4) 

6 is stationary, 

For the purpose of stochastic quantisation we wish to construct a Markov process 
with the invariant measure p. We apply the theory of Dirichlet forms in the formulation 
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of Albeverio, Hoegh-Krohn and Streit [9]. Let A be the operator defined by the bilinear 
form 

(f, Ah)  = i  1 p(dm)(df, dh), (2.7) 

where ( ,)  is the Riemannian structure on TM:.  
Then, assuming p ( d m )  = [ j d m  exp(-S(m))]- '  d m  exp(-S(m)),  we find 

A = - l A  2 M  -1X Z h  (2.8) 

where A M  is the Laplace-Beltrami operator on M,, and X b €  TM,, is the vector field 
with components 

b ( m )  = - C S ( m ) .  (2.9) 

By direct computation we can check that 

A* = -;AM + iXh  + .b" (2.10) 

where V, denotes the covariant derivative, and  that (2.6) is fulfilled. 
It follows from the theory of diffusion processes (Ikeda and Watanabe [lo]) that 

the process 6 defined by the generator A (2.8) is a solution of the stochastic equation 
(on a group manifold this equation has been derived previously by many authors, see 
e.g. PI, ~ 3 1 ,  ~ 4 1 )  

dE(t)  = i b ( 6 )  d t + d v ( r )  (2.11) 

where v ( f )  is the Brownian motion on M,. 
The Brownian motion on M ,  has a simple description in terms of the (orthonormal) 

frame bundle O( M,)  (Ikeda and Watanabe [lo]). Let U( t )  E O( M,,) be a solution of 
the stochastic equation 

d u (  t )  = E,( U )  0 dw"( t )  (2.12) 

where E, is the canonical basis of horizontal vector fields in TO( M,,),  w is the Wiener 
process ( d w l d t  is the white noise) and f 0 dw denotes the symmetric Stratonovitch 
differential defined by the formula 

with r,,, -r7, = t / N .  
f (  t ) (  w( t + d t )  - w( t ) )  is the It6 differential. 

(2.12), which describes a parallel displacement of the frame, we obtain 

It can be shown that f 0 dw = f dw+iVf dr,  where f d w =  

Now, the projection of U on M ,  defines the Brownian motion 7 on M,,. From 

d v L  = e,,(v) dw", .CleF0 0 d v L  = 0 (2.13) 

where (e,) is the frame on M ,  (e,,e,, = go,). In  local coordinates we may write explicitly 

d v ,  = e, ,(v) dw" + $ X v )  dr 

where r are the Christoffel symbols. 
The transition function for the process 5 can be computed from the Cameron- 

Martin-Girsanov formula, which may be considered as a representation of the Jacobian 
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of the transformation 7 + 6. We have 

(2.15) 

and d Wfm,,,,) is the Wiener measure on paths of the Brownian motion on M,  with 
~ ( 0 )  = m and ~ ( t )  = m'. 

Equations (2.1 l ) ,  (2.13) and (2.14) can easily be checked by means of the It6 formula 

df = a f  d t u + ; a , a f  d l "  d t "  

which allows us to show that E[dfl= -E[Af l  d t  (see Simon [ l l ] ) .  

mechanics) 
In  order to check, if (2.2) is fulfilled, we note that (in Dirac notation from quantum 

where 2 = exp(-iS) A exp(tS) = -;A, + V and exp(-tS) is the ground state of A, 
hence 

(mi exp(-Ait)lm') -+ exp(-fS(m)) exp(-fS(m'))  + O(exp - E ? ) .  (2.16) 

The existence of the limit N -+ cc in (2.3) and the equality (2.5) follow from the well 
known technique of the transfer matrix T = exp( --EA). If R(  m )  is the ground state of 
2, then 

1 F ( m ) R * ( m )  d m  = lim ( (moiTN/mO))- l (mO/  TN'2FTN'2~mo)  (2.17) 

as T N  projects on the ground state of A in the limit N -+ 00. As a consequence, if we 
take d m  fl ' (m) as the Gibbs measure (see §4), then we get the equivalence with the 
standard Gibbs ensemble average. 

The main statements formulated above remain valid for fields with values in a 
non-compact manifold provided that exp(-S) is integrable and the operator 2 in 
(2.16) has a discrete spectrum. This is the case for P(cp) models on a lattice with the 
interaction bounded from below. If these conditions are not fulfilled the problem of 
stochastic quantisation becomes much more involved. Solutions of the stochastic 
e,quations make sense only until a random explosion time ~ ( 7 )  (see Elworthy [29]). 
The Cameron-Martin-Girsanov formula (2.14) still holds true, but the limits in (2.2), 
(2.3) and (2.17) may not exist. Hence, it may be impossible to eliminate the fictitious 
time variable entering the stochastic equations. We prove in § 3 that for lattice fields 
the limits (2.3) and (2.17) do exist (although (2.2) does not) also for bottomless P(cp)  
models. In  3 5 it is shown that the interaction (2.15) resulting from the stochastic 
quantisation is bourlded from below for stochastically quantised Einstein gravity. 
Finally, in § 6 one-loop calculations are performed showing (in this approximation) 
the existence of the limit t = N -+ 

N+C2 

in (2.3) for gauge fields in the continuum. 
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3. P ( q )  models with bottomless action 

We now consider polynomial interactions U, such that U, is bounded from below, 
but Uo=lim,,o U, is not (e.g. U = - x 4 + & x 6 ) .  So, the action S , ( x ) ,  where 
x = ( x l , .  . . , x , )  E R",  has the form 

where k numbers the sites and ( k ,  r )  the bonds of a finite lattice. Then, the transition 
function p ( t , x ,  x ' )  (equation (2.14)) is expressed by the kernel of the quantum 
mechanical n- particle Hamiltonian 

where 

(3.3) 

It is known (Reed and Simon [12]) that if V , ( x )  is bounded from below and V , ( x )  + CO, 

when 1x1 + 00, then has a purely discrete spectrum and the unique ground state. If 
moreover exp( -is,) E L2( R " ) ,  then exp(-$,) is the ground state, because 
A, exp(-$,)=O and A, 3 0 .  Then, from (2.16) it follows that p ( f , x ,  x ' ) +  
exp(-S,(x')), when t + CO. Equation (2.17) shows that we can construct the path space 
measure dv,( 5) (equation (2.3)) corresponding to the stationary Markov process with 
the invariant measure d p E  = ( 5  dx exp ( - S e ) ) - '  dx exp ( - S E ) .  Hence, the os positivity 

r r 
J dv, F F =  d p E  FmsQ J (3.4) 

(where 8 is a reflection of lattice sites with respect to a certain plane on a lattice) holds 
true for the v-expectation values, if it is true for the p-expectation values (this requires 
a 2 0  in (3.1) and the invariance of the finite lattice with respect to the reflection 8, 
see Frohlich et a1 [13]). 

Assume now that S, + So and VS, + VSo, that V, (equation (3.3)) is bounded from 
below uniformly in E ,  and both V , ( x )  and V o ( x )  tend to infinity when / xJ+cr )  (this is 
true, if U , ( x )  is a polynomial). Then, b, + bo in (2.11) and the transition function p ,  
(equation (2.14)) converges to po. However, if exp(-So) is not integrable, then 
po( t, x, x ' )  has a trivial limit for t + CO (so it does not fulfil ( 2 . 2 ) )  as 

p o ( t ,  x, x ' )  -exp(-~S,(x ' )+tS,(x) )n(x ' )~(x)  exp(-E,t) (3.5) 
for large t ,  where Eo>O is the lowest eigenvalue of A, and S1#exp(-iSo) is the 
corresponding eigenfunction (the ground state). Equation (3.5) ca? be proved by 
means of the transfer matrix method, because under our assumptions A. has a discrete 
spectrum and the unique ground state Cl E L2( R") .  The behaviour (3.5) could also be 
derived from the stochastic equation (2.1 1) with bo = -VSo. When So is unbounded 
from below, then the process 5 has a finite explosion time ~ ( 5 ) .  In such a case 

Po(t ,x ,  B ) =  P ( t ( t ) E B l t ( ~ ) = x ,  t < 7 ( 5 ) ) - p ( t < ~ T ( 5 ) ) - e x p ( - E O r )  

for large t ,  where P (  1 ) denotes the conditional probability. In conclusion, the transition 
function po does not determine a stationary Markov process, because the conditions 
(2.2)-(2.3) are not fulfilled. 
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Nevertheless, we can construct a stationary Markov process from the kernel of 
exp(-Aot). Let 

p ( t ,  x, x') = n ( x ' ) n - ' ( x )  exp(E,t)(xlexp(-A,t)Ix~). (3.6) 

Then, it is easy to check that 

(3.7) 

is the transition function of a stationary Markov process with a finite invariant measure 
d p ( x )  = d x  n ' (x) ,  which coincides with the asymptotic distribution (2.2). Then, we 
can construct the path space measure U (2.3) corresponding to this stationary process, 
which we now express as a limit (in the weak sense) of U', where 

(3.8) 

where d W:i,!$; is the Wiener measure on paths with [ ( - t )  = x and t( t )  = x'. From 
(2.17) we get 

j d u F ( [ ( t ) ) =  d x R 2 ( x ) F ( x ) .  5 (3.9) 

The measure v = lim U' exists for any (bottomless) polynomial U. This measure has 
been proposed as a stabilised version of bottomless theories by Greensite and Halpern 
[6]. However, the stochastic process [( T )  defined by the measure U does not fulfil the 
stochastic equation for the initial theory So (equation (3.1)), but instead a stochastic 
equation determined by the invariant measure d x  n2 (see [ 9 ] )  

d [ = V l n R d T + d w .  (3.10) 

In S2-2(x,, . . . , x,) is in general a non-local function of xk (i.e. not a sum over k ) .  
Hence, it would be hardly identifiable with a stabilised bottomless action, if not for the 
following remarkable properties of the measure 0: ( i )  in a formal perturbation expansion 
of the LHS of (3.9) we get the perturbation expansion for bottomless So theory as 
shown in reference [6]; (ii) du' is equal to lim,,,du:, where U: is defined by (3.8) 
with Vo replaced by V, (3.3) and exp(-S,) E L ' ( R " )  (this follows from the continuity 
of V, and its boundedness from below uniformly in E ) .  The property (i) may be 
considered as an indication that I n i T 2 - ~ C ( x k - x , ) 2  behaves like U ( x )  for small x. 
Moreover, from the results of Agmon and Lithner (see [15]) it follows that for large 
1x1 the 'effective action' In K2 behaves like lSo(x)/. 

It still remains unclear whether theory (3.9) is os positive. It would be so if we 
could show that U is a limit of U, fulfilling the os inequality (3.4). We show that there 
is no U,, which could be constructed from S, of the form (3.1), if x E R (we owe this 
argument to S Kusuoka). In fact, let R , (x )  be a continuous function, let d p E ( x )  = 
z;'Rf(x) d x  be the probability measure on R" and a, + R o e  L 2 ( R " )  uniformly on 
compact sets. Then, z i ' + O ,  but j d x R f F ( x )  remains finite for F with a bounded 
support, hence U, + 0. 
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Remark: Let S,(x) = So(x) + EX',, where So is a bottomless polynomial. Then, for m 
large enough 

V,(X) = VO(X)+ EQE(X), 

where both Vo and QB are polynomials in x bounded from below and Qe is continuous 
in E .  It follows from the argument above and  (3.9) that the limits r + CO and E + 0 of 
the measure U': (3.8) are not interchangeable. Moreover, the perturbation EQ, in U, 
cannot be turned off (in contradistinction to the continuum P(cp), models [14]). The 
fact that QE(x)  although continuous in E has minima tending to *CO, when E + 0 seems 
to be responsible for the discontinuity of U,. 

As there is no way to construct an os measure on R" such that d p E  + d x  n'(x),  
there remains to look for measures d p E ( x )  = d x  exp(-S,(x)) on I", where I is compact. 
In order to avoid the boundary problems in (2.6), it is useful to assume that S ( x )  is 
periodic. Then, the os action on [ - n-, n-I", which is even and with the nearest-neighbour 
interactions has the form (z > 0) 

S , ( X )  = -ZE-' cos(x, - x,) +e c, cos mxk. 
( k , m )  k m  

(3.11) 

With a proper choice of c,( E )  (c,( E )  + CO for E + 0) one can achieve the result that the 
formal 'low-temperature' limit of dpL,  F will coincide with the theory (3.9). It is even 
possible that the low-temperature expansion is asymptotic to (3.9) as has been shown 
in the case of the plane rotator [28]. 

The main interest in bottomless actions concentrates on the negative coupling (p4 

in four dimensions (advocated some time ago by Symanzik [16]). The Lebowitz 
inequality, crucial in the proof of triviality of (p4 [17], is violated in this model. The 
perturbative asymptotic freedom of the theory indicates ultraviolet stability. The 
negative coupling appears to be essential for Borel summability [18]. The os positivity 
ensures the existence of the Hamiltonian bounded from below. However, it is hard 
to reconcile the asymptotic freedom, the Borel summability and the os positivity. The 
Coleman argument [ 191 indicates that the negative coupling cp4 should have effective 
action unbounded from below. The effective action seems to be positive for large fields 
in the model (3.9), because of the exp( -IS(x)l) behaviour, which we have mentioned 
before. 

4. Lattice gauge theories 

The formalism of § 2 finds applications to (T models and  gauge theories, e.g. 

s= - P  lzk+Pzk12 
k. P 

(4.1) 

where Zkzk = 1, zk is a complex N vector and  the sum is over all bonds ( k ,  p )  of the 
lattice (this is the CP( N - 1) model [20] being a generalisation of the SN- '  model). 

For the lattice gauge theories with the gauge group G we have [21] 

(4.2) 

Here the sum is over all plaquettes P bounded by directed bonds ( k ,  p ) ,  ( k + p ,  U ) ,  

( k +  U ,  - p )  and ( k ,  - U ) ,  where p denotes the direction and gk-P = g;:. 
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For the weak coupling expansion in gauge theories [22], [23] it is useful to introduce 
an exponential parametrisation of the group element gk,, = exp A,,, where Ak,, = 
Z, A:,,A, and A, are the generators of the algebra (with Tr A a A b  = -aab) .  Then [22] 

g ( A  + SA) = g(A)( 1 + aA"E,b(A)A b ,  

(4.3) 

The Riemannian metric on G is defined by 

Tr d g  dg- '  = gab dA" dAb. (4.4) 

g,b(A)= -Ea,(A)E;f,(A)=2[(cosh A -  1)/A2],b. (4.5) 

From (4.3)-(4.4) we get 

Using (4.3)-(4.5) and the formula 

- c T r  %A" Tr 9A'=Tr %9--(1/N) Tr % T r  9 
a 

( N  is the dimension of the representation) we get for the potential V (2.15) 

c [TrgPgP.-(l/N)TrgPTrg,,l 
v=--  P' c 

8 (kicr) P , P ' E ( k , ) r l  

(4.6) 

for real representations (the sum is over plaquettes attached to the bond ( k ,  p ) )  and a 
real part of (4.6) for unitary representations. 

The path space measure for the Markov process 6 on the group G could now be 
constructed as a limit t+m of do', where do '  is defined like the measure in (3.8) with 
d Wi;,$j' being the Wiener measure for the Brownian motion on G. However, we prefer 
to use (2.3)-(2.4) and (2.14) to define the measure d g  exp( -2 (g ) )  with 2 in a form 
analogous to the heat kernel action [24]. We cannot compute p (  E, g, g ')  explicitly. 
However, we may take E arbitrarily small to write 2 in the form 

T H K = - C  lnp0(&, gkp(S), g k p ( s + l ) ) + c  E V ( g ( s ) )  (4.7) 
s l k , & l  5 

where po  is the transition function for the Brownian motion on G (the heat kernel) or 
in a still simpler form 

It can be shown [25] that both d g  exp( -THK) and d g  exp( -3) converge as E -+ 0 to 
the measure u defined by (3.8). (We could use formulae analogous to (4.7)-(4.8) also 
for ~ ( p )  models, -Z ~-ITrg(s)g;:+,, is then replaced by + X  &-'(?Ck(S)-?Ck(S+l))*.) 
Only in the limit E + O  do  we recover the formula (2.5) and the os positivity. The 
expression for du = d g  exp( -2) is the lattice approximation of the formal path space 
formula for the measure (3.8) 
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There is a general rule for obtaining the formal path space measure (or more precisely 
the Lagrangian, see [26]) from the stochastic equation (we apply this rule in § 5 ) .  We 
express the free Lagrangian L = 4 (d W,/d.r)(d W,/dT) d7 for the Wiener process by 
the Brownian motion q on the manifold using the stochastic equation (2.13) (this is 
like the Nicolai mapping [27]) 

(4.10) 

The action 2 (4.6) and (4.8) could be applied for approximate calculations as an 
alternative to the conventional methods. It can easily be seen that at high temperatures 
p ' (strong coupling) we get the Wilson area law and the mass gap. However, we 
expect that the formal [22], [23] low-temperature (weak coupling) expansions in the 
2-theory and in the S-theory behave in a different way. Namely, the Laplace method 
for S, = S+ Jg is not applicable (there is no minimum), but it seems to be applicable 
in the stochastic version, i.e. 2 ( S , )  does have a minimum. We shall show this in a 
formal continuum limit (i.e. when exp A is expanded in A, the difference operators 
are replaced by differential operators and the non-classical terms [22] are neglected) 
in § 6. This observation inspires our aspiration for a rigorous approach to the low- 
temperature expansion in the 2-model of lattice gauge theory (see [28] for some results 
in this direction). 

5. Stochastic quantisation of gravity 

In the previous sections we could prove that a stationary Markov process 5 existed 
with the invariant measure p owing to our assumption that M was finite dimensional 
(this corresponds to the field theory on a lattice). The theory of stochastic processes 
on infinite dimensional spaces is also well developed and already has found applications 
to quantum field theory [9]. Also the theory of stochastic processes on Hilbert manifolds 
has a sound mathematical basis (see e.g. [29], [30]). The stochastic quantisation of 
field theory needs distribution valued processes and can be formulated in the Hilbert 
space only through regularisation (this was the reason to use the lattice). Then, for 
some measures p on Hilbert spaces (including the perturbed Wiener measure) a Markov 
process has been constructed with p as an invariant measure (see [31], [32]). These 
results encourage us to treat the stochastic equations (2.11)-(2.13) in the Hilbert 
manifold A of all Riemannian structures on M [33]. 

The manifold A is a set of all sections in S'T, the bundle of symmetric 2-tensors, 
which induce positive definite scalar product on each tangent space T,M. The tangent 
space Tr41 to A at g E A is a subspace of S2T Since each g E A is a Riemannian 
structure on TM, therefore it induces such a structure on T$ c S 2 T  (for precise 
definitions and proofs we refer to [33]). Now let ekn be an orthonormal frame at g i.e. 
an orthonormal base of vector fields in Tr&. The collection of all orthonormal frames 
at all g E A forms the frame bundle O ( A ) .  O ( A )  is a Riemannian manifold with the 
Levi-Civita connection defined on it. Let Ekn be a base of horizontal vector fields 
in O(Jd). Then, we may define the Brownian motion on O ( A )  as a solution of a 
stochastic equation being a generalisation of (2.12): 
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where W$ is the Wiener process indexed by the Hilbert space S 2 L 2 ( R d )  of square 
integrable 2-tensors on R d ,  i.e. 

E [ (  W,,f)( W+,.f’)I= min(7, . r ’ ) ( f , f ’ )  ( 5 . 2 )  

The Brownian motion h, on A can be defined as a projection of ,yT on A. We 
with ( f , f ’ ) = 5 d X f k “ ( X ) f l k n ( X ) .  

now define the drift term 

b = - 9 S  (5.3) 

where 9 is the FrCchet derivative, i.e. F (  h + ~ f )  - F (  h)  = E (  9 F , f ) ,  + O( E ’ )  and ( ), is 
the Riemannian structure in T$. Now, the stochastic equation for quantum gravity 
reads 

d g , = $ b d r + d h ,  (5.4) 

We may define the generator A of the process g, 

(Af)(go) = lim 7-0 T-I(E[f(g,)l-f(g,)). (5.5) 

We expect that, like in the finite dimensional case, in a certain sense 

where ( ), is the Riemannian structure on TA*  and d g  exp(-S(g)) is to be the invariant 
measure for the Markov stochastic process g, 

In local coordinates (xp, g”‘(x)) of A the orthonormal frame ekn in T& defined 
by (ekf, e,,,,,), = Sk,Sl ,  can be chosen in the form 

( ekl)+(x) = g-’/‘((x)e:( x )  e;(x) (5 .7)  

where ekp(x)ekL(x)  = g””(x)  and g = det(g&‘). Then, (5.1) projected on A has a form 
analogous to (2.13) (see [lo], [34] for a detailed discussion of (2.12)-(2.13)) 

dg:‘(x) = eE(g,(x))  o dWff(x)  

V,,e:fYg,(x)) O dgY(x)  = 0 

Ypve:; = ae:;/agP“+ r$:icap,e$ (5.9) 

(5.8) 

where 

and 

r $,&p , = g’/*( a /  agPP ) ( gFmg u0g-’/2) - g 1/2(a/agup ) ( gppg 

- g ’ / 2 ( a / a g ~ [ r ) ( g ” u g ~ p g l / 2  1. (5.10) 

If we express the Stratonovitch differential (fo d W =f d W + i  df d W) by the It6 
differential ( f d  W), then (5.4) for g, has a singular form 

dg?‘(x) = $b”‘(g-(x)) d.r+$”’((g,(x)) d r +  g;’”((x)et(x)er”(x) d W,“‘(x) 

where P” = r ~ ~ ~ ~ , , , , g P u g “ P S , ( 0 )  and J f ( m ) S , ( m ,  m ’ )  = f ( m ’ ) .  

(5.11) 
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The singular factor S,(O) comes from the functional derivative Sg( m)/Sg( m) 
resulting from the term df d W. Equation (5.11) is useful, if we wish to check that (i) 
the operator (5.6) is the generator of the stochastic process g, (ii) A* eCS=O, i.e. e-’ 
fulfills the equation for the invariant measure, (iii) the transition function P( 1, g, 8’) 
is determined by the formula (2.14) with 

V = 4 dx g(x)”2b””(g)b,u(g) +f 1 dx g(x)’/2S,(0)V,,b’”(g) 

and d W a ‘Wiener measure on A’. 
Checking the points (i)-(iii) is just a repetition of the calculations from § 2 with 

functional derivatives replacing the ordinary derivatives (with ( , )R = 
dx(g(x))”’( r ) g ( x )  in (5.6)). However, in order to really construct the process g, we 

have to construct the ‘Wiener measure on A’. Clearly, this is an extremely difficult 
problem (see, however, 1301). We can give only a formal expression for this measure. 
We follow the prescription from the previous section applied for the derivation of 
(4.9). Now, from (5.8) 

(5.12) I 

d Wr’(x) d Wr’(x) 
L = i  d x d r  5 d r  d r  

(5.13) 

Hence, the path space measure for g, has the form d g  exp[-Z(g)], where 

(5.14) 

For the Einstein action S = dxg(x)”2R we get 

dxg(x ,  T ) ” ~ R , J ? ~ ” + ~  dxg(x,  r)’/’S,(O)R +surface terms. 5 (5.15) 

The path space action 2 is bounded from below. In such a case the functional integral 
is well defined after ultraviolet regularisation (the regularisation should preserve the 
invariance under the general coordinate transformations). The computations in § 6 
show that if K 1 ( x ,  y )  is the propagator of the conventional quantum Einstein gravity 
(Hawking [43]), then the propagator resulting from stochastic quantisation, as the 
two-point function of the metric tensor g, has the form l .A-’(x,y) (in spite of the 
formal resemblance to the R 2  theory with the pW4 propagator). Both propagators A-’ 
(having negative eigenvalues) as well as IAl-’ fail to fulfil the os positivity. We do  
not find this situation disastrous. It is known, that in spite of the negative eigenvalues 
of Ju in the Euclidean theory, a unitary S-matrix can be defined in the one-loop 
quantum gravity for some physical scattering processes. The Wightman functions 
of the metric tensor g may have no physical meaning. Only some functionals of g will 
have a physical interpretation. For such functionals the os positivity should be fulfilled, 
if the energy of physical states is to be bounded from below. Then we expect the 
formal perturbation series of both stochastically and conventionally quantised theories 
to coincide. 
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6. One-loop effective action 

We now consider the continuum Yang-Mills theory. It is possible to write down the 
stochastic equation in the global form on the manifold of all connections (see [36], 
the formalism of Asorey and Mitter requires the knowledge of the physical ground 
state). We shall treat the continuum Yang-Mills theory as a formal continuum limit 
of the lattice theory as discussed at the end of § 4. The stochastic equation is 

dA(T ,x )=fb (A)  d.r+dW,(x) (6.1) 

bE( A) = -SS( A)/ SAE(x). (6.2) 

where 

The transition function (2.14) now has the form 

P ( A , € @ I A , = B ) = e x p ( f S ( B ) )  dW, (A( - ) ) exp( - fS (A, ) )  exp 

(6.3) 

where d WB is the Wiener measure, i.e. the Gaussian measure with mean B“*(x) and 
covariance 

E [ ( A ~ ’ ” ( x ) - B a ” ( x ) ) ( A ~ ~ ( x ’ ) - B b ” ( x ’ ) ) ] =  S r v S a b  min(t, t‘)S(x-x’) 

and 

V(A) = $  bl(A)bE(A)+$ SbE/GAl(x). I J 
Equation (6.3) is well defined, if S and V are regularised. From the transition function 
we can construct the path space measure U. We construct first U‘ the path space measure 
on periodic paths A-, = A, and then take the limit t + 00. Taking as the initial distribu- 
tion the invariant measure dA exp(-S(A)) we get the following formula for v r  

du‘(A( . ) )  = dA(7, x )  exp( -z (A) )  

= dA(x) exp(-S(A)) d W{i‘$’,(A( . ) )  exp - V(A,) d.r , ( I:, ) (6.5) 

Let 

hS(A) =$’(A) +JA. (6.6) 
We write 

A( 7, x ) = B ( x ) + JhQ( T, x ) 

where Q( - t ,  x )  = Q( +t, x)  = 0 and choose B to fulfil the classical equations GS/SB = 0. 
Then, we have to fix the gauge. We do this in the standard way (the stochastic 
quantisation offers new methods, see [37]) inserting the background gauge condition 
S(V,”Q). Then, expanding 2 around B we get 

% ( B +  Q)=S(B)+$Q(-d’/dT’+A’)Q+O(h) (6.8) 

2.4, = -V,”V,”S,,+~~F,,(B). (6.9) 

where 
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Remark. We have put S(0) Tr A(x,  x )  = 0 (the last term in (6.4)), because there is no 
local, gauge and Euclidean invariant expression of second order in A. 

The main point we wish to emphasise in this section is the following: the second 
variation of 2 is always non-negative and for a class of sources J strictly positive, i.e. 
2 has in fact a minimum (this is not true for S ( A )  = t F 2 ( A ) + J A ,  see [38], [39]). In 
such a case the Laplace method can be applied leading to a well defined semiclassical 
expansion. Performing the Gaussian integral over Q and neglecting higher orders in 
h we get the one-loop formula [19] for the effective action 

T , ( B )  = f F 2 ( B )  -Tr In(-VBVB)+fTr In(-d2/dT2+A2), (6.10) 

The second term comes from the Faddeev-Popov determinant. The effective action 
r, depends on t ,  because we have imposed periodic boundary conditions for the 
operator -d2/dr2 on the interval [-t, t]. There remains to perform the limit t +CO. 

For this purpose the trace over the eigenvalues .rr2n2tV2 of -d2/dr2 has to be computed. 
We get (cf with similar computations in [40], here Tr .& = 0) 

Tr In(-d2/dr2+A2) 

3 = -Tr lOmdx[ f ( . r r2n2/ t2+A2+x)- '  
n = O  

= f Tr In A2 - 2 t 2  Tr 

= f T r I n  A2+Trln(l-exp(-4tlAl)) .  

So, finally 

(6.11) 

T,(B) =$F2(B)-TrIn( -VBVB)+fTr  In I & \ .  (6.12) 

The formula (6.12) coincides with the standard one-loop formula for the Yang-Mills 
theory except for the absolute value of A. The operator A has negative eigenvalues 
(the unstable modes [38], [39]), which led to difficulties in the interpretation of the 
one-loop effective action (in order to avoid the negative eigenvalues one could introduce 
an infrared regularisation adding the mass term to A ; the mass can be removed after 
taking the limit t + CO, we interpret this regularisation independence as infrared stabili- 
sation). 

We can compute T(A) for an Abelian gauge field of constant strength F. We have 

Tr In IA/ = f Tr In A2 = -; Tr dm[(m + i A ) - ' +  ( m  - id ) - ' ]  lom 
= - fTr  jr dm j:fds exp(-fms)(exp(isA/2)+exp(-isA/2)) 

U-s 
cos( U,+ U - ) s  cos( U+ - U-)s 

sin u,s sin U - s  

1 - 1 +&C2( G)s2F2B(  1 - S )  (6.13) 
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where 

with 
u,=(C~(G)/~)”~([FF+FF*]”*~[FF-FF*]”~) 

C,( G)6““ =rbCyb‘ FXp = f ~ a p w p  F w p .  (6.14) 

The details of the computation of exp(isA) in (6.13), the renormalisation of the 
determinants as well as the computation of det(-VBVB) have been discussed in our  
earlier papers [41]. From the integral representation of T r l n  IAI (6.13) and  
Tr In( - V B V B )  [41] we can get the leading behaviour for strong as well as for weak fields 

T ( B )  =i(2n)-2C2(G)(l j l )F2 In F 2 + O ( F 2 ) .  (6.15) 

This behaviour is the same as in the leading logarithm model [42]. Moreover, it can 
be shown that the effective action (6.12) has a minimum (the gluon condensate) at  
F2 # 0. In an  infrared regularised theory we get the F2 behaviour for weak fields and  
the minimum of r at F 2  = 0. 

7. Discussion 

We have shown that the formulation of the lattice quantum field theory as a classical 
statistical mechanics by means of a Gibbs measure is equivalent to the stochastic 
quantisation of Parisi and  Wu. The stochastic method shows, however, a remarkable 
stability with respect to a flip of the sign of the coupling constant. For this reason it 
appears to be useful in the quantisation of theories needing the charge renormalisation, 
when we cannot a priori impose the requirement of the positivity of the bare charge. 
The ‘wrong sign’ of the coupling does not exclude the possibility that the effective 
action and  the Hamiltonian are bounded from below. The sign of the coupling 
appearing in the perturbation expansion (weak fields) may be different from the 
behaviour of the effective action for strong fields. 

The stochastic quantisation leads to a functional integral in Yang-Mills theory, 
which has a well defined semiclassical expansion. This also seems to be an outcome 
of the stability with respect to the flip of the sign of some terms in the action. The 
unstable modes in the loop expansion are related to the appearance of the infrared 
Landau ghost. In this case the one-loop propagator A-’ becomes negative at  low 
momenta. This is in contradiction with the positivity of the functional integral. The 
stochastic method replaces A-’ by IAI-’, From this point of view the stochastic 
quantisation renders a particular choice of the function, which is to be the sum of the 
one-loop diagrams (A-’ and 1AI-l have the same perturbation series). However, if 
we have in view the problem of approximating the functional integral, then I - h - ’  is 
a meaningful approximation, whereas A-’ is not. 

The difficulties with the stability of quantum gravity are even more serious. The 
Einstein action is unbounded from below. Then, like in the Yang-Mills theory the 
second variation of the action is an  operator A with positive as well as negative 
eigenvalues. As noted by Greensite and Halpern [6] stochastic quantisation leads to 
different results from the Hawking method [43]. Quantum gravity results find applica- 
tions to the thermodynamics of gravitons [43], [44] and in the discussion of gravitational 
forces at short distances. As in Yang-Mills theory (§ 6), stochastic quantisation replaces 
the fluctuation operator .d by its absolute value. We shall discuss the behaviour of 
the effective action in a forthcoming paper [35]. 
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